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Noise-Induced Order II 

K. M a t s u m o t o  1 

Received July 19, 1983 

A curious noise effect in certain maps reported earlier is investigated further. A 
striking feature of these maps is obtained in the symbolic dynamical approach. 
The decrease of entropy is attributed to a simple mechanism which deletes 
certain states in the symbolic dynamics, and the value of the modified entropy is 
calculated based on this picture. 
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1. I N T R O D U C T I O N  

A curious noise effect in a certain class of one-dimensional map is reported 
in Ref. 1. If we add noise to the chaotic dynamics generated from these 
maps, the entropy of the orbits decreases to 60%-70% of the original value 
at a critical noise amplitude. At the same time, the Lyapunov number  
decreases to a negative value and the spectrum shows a relatively sharp 
peak which is not observed originally. Moreover, the peaks in the invariant 
measure alter their positions as if the dynamics is roughly periodic. This 
paper  is an at tempt to understand this phenomenon. 

Our approach is based on the symbolic dynamics. By this approach, 
we can clearly see the dissimilarity between the maps in the above class and 
the other maps such as the logistic model, and attribute the decrease of 
entropy to a very simple mechanism. In the presence of noise, the peculiar- 
ity of the former maps leads to the disappearance of certain symbolic 
dynamical  states, and results in the decrease of entropy. 

In Section 2, the definitions and tools for symbolic dynamical ap- 
proach are presented. Some types of partition play a central role. In Section 
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3 actual partitions and refinements (see Section 2 for definitions) are 
calculated on computer and explicitly show the peculiarity of the maps in 
the class mentioned above. Section 4 is devoted to the consideration of the 
noise effect from the viewpoint in this paper. The altered entropy value is 
predicted and compared with the value in the simulations for a certain 
map. 

At present we do not have any simple criterion to say a given map is in 
the class above, but we can create one in the class by using an appropriate 
isomorphism. In Section 5 we show an example of map thus obtained. The 
last section contains summary and discussion. 

2. SYMBOLIC DYNAMICS, REFINEMENT, AND ENTROPY 

First, we introduce the notion of symbolic dynamics. 
Consider a piecewise C 1 map f from unit interval (0, 1) to itself. To 

such map we associate a minimal partition of unit interval such that on 
each element of it the map is monotonic and the number of the elements of 
the partition is minimum. In the logistic model, for example, the minimal 
partition A is given by A = {R,L}, where R = (1/2,  1) and L = (0, 1/2). If 
we associate a symbol to each element of the partition, we can associate a 
semi-infinite sequence of symbols to a point of unit interval. This corre- 
spondence is achieved when the nth symbol of the sequence is the symbol 
for the element of the partition which contains the nth iteration of that 
point by f.  

In certain cases, (2~ when the map has an absolutely continuous invari- 
ant measure, the correspondence between a point and a sequence of 
symbols is proved to be one-to-one with certain restrictions on the combi- 
nations of symbols. In the following cases, we assume that the correspon- 
dence is one-to-one and use freely the sequences of symbols in place of the 
orbits of f, without any claims of rigor. 

To construct a symbolic dynamics out of f, other partitions than the 
minimal partition are possible. One possibility is the Markov partition. (3) 
This is a partition such that f is monotonic in every element of it and f 
maps the set of all the end points of the partition into itself. A map which 
has Markov partition is called Markov, but the existence of an absolutely 
continuous measure does not mean the map is Markov. But in many cases, 
a non-Markov map can be approximated as closely as desired by a Markov 
map. One of the advantages of this partition is that the rule to construct a 
sequence which has a corresponding point in unit interval is simple. In the 
following, we use the Markov partition frequently, while the minimal 
partition is convenient for computer simulations. 
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As a matter of notation, if we write a i for a symbol of the symbolic 
dynamics, then we denote the corresponding element of the partition, (i.e., 
an interval in the unit interval), by (ai) and call it "state a i.'' 

A partition A'  is a refinement of A when each element of A'  is 
contained in some element of A. We consider here a special refinement of 
partitions. A first refinement A 1 of the partition A = {(a 0 . . . . .  (an) } is 
defined as A l = {(alal), (ala2) . . . .  ,(ana,,)), where (aiaj) = (ai) A f - l ( (a j ) )  
(1 < i , j  < n). Clearly (aiaj) are all disjoint. When (ai)A f - l ( (a j ) )  is empty 
then we delete the (a~aj) from the list of A ~ above. In general we can define 
kth refinement of A, A k, in the same way where its elements (a~l . . .  ash + ~) 
= (a/1) N f - l ( ( a i 2 ) ) N ' ' '  N f-k((aik+l)).  Again in the case of logistic 
model, kth refinement is obtained when the set of points uk=0(f - i (0 .5)}  is 
taken as a set of end points of the partition. An interval between two 
consecutive points represents a state of A k. 

Interpreting the symbolic sequences of a map as the products of an 
information source, we can calculate its Shannon entropy. (4) This is equal 
to the K - S  entropy (5) of the absolutely continuous measure of the map if it 
exists. Let p ( a i a . . .  %)  be the probability of the occurrence of the se- 
quence a~ . . .  a~, in the symbolic dynamics, then by definition the entropy 
H is 

H = - l i m i t n - l ~ p ( a i l  . . .  ai,,)ln(p(ail . . .  %,)) 
n----> ~ 

where the summation is taken over all the possible sequences of symbols of 
length n. In this way, we can calculate the entropy in a computer simula- 
tion. But generally this expression converges very slowly. In computer 
simulations we rather assume that the symbolic dynamics is a Markov 
process of degree n, i.e., the (n + 1)th symbol depends only on the last n 
symbols, and use the following expression for the entropy H of a Markov 
process: 

,j 

where p~j is the transition matrix of the Markov process and Pi is the 
stationary probability. The entropy obtained in this way is an upper bound 
for the real entropy of the original process. 

An example of this way to calculate the entropy is shown in Fig. 1. 
This figure is obtained in the process of drawing Fig. 7, which shows the 
variation of entropy for a map as the noise level is varied. We take the 
minimal partition of the map and approximate the dynamics by Markov 
processes of various degree. Then, by the above expression, the entropy is 
calculated. In Fig. 1 the vertical axis is the entropy and the other two axes 
are the noise level and the degree of the Markov process used to approxi- 
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Fig. 1. Entropy plotted against the degree of Markov process and the noise level in the B-Z 
map with b = 0.012137285937 . . . .  

mate the symbolic dynamics (degree 0 to 12). As a whole, the convergence 
of the values of entropy are good and the approximation by a Markov 
process of degree 12 is good enough for this purpose. Incidentally, the 
convergence is better when the noise level is larger. 

3. NONUNIFORMITY IN THE WIDTH OF STATES 

An element ( a i )  of a partition A = ((al) . . . . .  (a~)} has the width l i in 
unit interval. We denote the width of an element (ail . . .  aik ) of kth 
refinement A k of A by Iil . . .  ik" 

If the correspondence between the sequences of the symbols and 
points in unit interval is one-to-one, as assumed in Section 2, all the widths 
l i l . . ,  ik go zero, namely, the element ( a l l  . . .  a ik  ) shrinks to one point, as k 
goes infinity. But the manner of convergence can be different for different 
maps. Every element of A k may have the same order of width or some 
elements may have very different order of width from the other elements. If 
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the former holds for every k in a map, the convergence of the states is 
uniform, and otherwise, the convergence is called nonuniform. 

We now show two maps which display these two types of convergence 
of states. A map for the uniform convergence case is the logistic map, (6) 

f ( x )  = a x ( 1  - x) 

and a map for the nonuniform convergence case is the B - Z  map, (7) 

g ( x ) = [ ( x - O . 1 2 5 )  vs  + 0 . 5 0 6 0 7 3 5 7 ] e x p ( - x )  + b, for x <0 .3  

g(x)  = O.121205692[lOxexp(- lO/3x)]  19 + b, for x/> 0.3 

For each map, we take the minimal partition and show in Fig. 2 the fourth 
refinement of it. As stated in Section 2, in these maps the kth refinement is 

<~xLO6~S[ [C H@DELx~x 

1,0  

k O ~ 8  
K.OOOOO 3 . 5 0 0 0 0  

PFtRRrS~_TER 

Fig. 4. Variation of fifth refinement of the minimal partition as the parameter is varied. The 
vertical axis is the unit interval and the horizontal axis is the parameter. (a) Logistic map. 
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i . 0  
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Fig. 4. (b) B - Z  map.  

l l 
1 
J 

0o108D8 

obtained by taking the inverse images of the critical point (at which 
df/dx = 0) successively. In Fig. 2 the corresponding symbol for each state 
is indicated. 

The difference is obvious. For the B-Z map the narrowest states are 
already out of resolution of this figure. To show the nonuniformity clearly, 
the widths of states are plotted in Fig. 3 for some refinements in the log 10 
scale. 

Incidentally, the maps presented each have a bifurcation parameter (a 
for logistic model and b for B-Z model). Then the question arises whether 
this type of convergence changes as the parameter is varied. Figure 4 shows 
the fifth refinement of minimal partitions for a range of the parameter in 
each map. As far as judged from this figure, the types of convergence of 
states do not change as the additive or multiplicative parameter is varied. 

This nonuniformity in the width of states may lead to an interesting 
phenomenon when noise is added in the dynamics. The uniform noise in 
unit interval becomes very nonuniform when the dynamics is translated 
into symbolic dynamics. 



Noise-Induced Order II 119 

4. APPROXIMATION TO NOISY DYNAMICS 

What are the consequences of this nonuniform noise on the symbolic 
dynamics? A major one is to prevent the narrow states from occurring in 
the dynamics. 

To see this, consider a map f on the unit interval and its partition 
A = {(al) . . . . .  (an) }. Let I i be the width of state a i in the unit interval, and 
p(ai]a9) the conditional probability of occurrence of state a i after state aj 
when the dynamics is without noise. Now add the rectangular noise of 
width 2d to the m a p f  (Fig. 5a). We map a point x t o f ( x )  and according to 
the distribution law of noise, we disturb this point. By this process the 
conditional probabili typ(ai[aj)  will be altered. To estimate this, assume the 
uniform measure on interval (ai)just mapped by f from state aj (Fig. 5b). 

MERSURE 

(FI) 

MEFqSURE 

I> X -AX IS  

(B) 

MERSURE 

X-AXIS 

Fig. 5. (a) Rectangu lar  noise.  (b) T h e  un i form measure  on a state. (c) Dis turbed  measure  of 
(b) by (a). 
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Then disturb this measure by the noise above. Then the leaked measure is 
d / 2 l  when d < ! and 1 - l / 2 d  when d >1 l (Fig. 5c). Suppose a i is a narrow 
state and a i_ l, ag+ ~ are wide states, namely, l i << l i_ j, li+ ~, state a~ being 
between the others in the unit interval. When noise is added to this 
situation the effects on the conditional probability p(ag[aj) are (1) to 
decrease in p(ai[aj) due to leaking, and (2) to increase in p(ai]aj) due to 
leaking fromp(ai+ 1[ aj), ])(a i_ 1[ aj) and other transitions. 

But if we set d (noise level) such that l i < d << l i_ l, li +~ holds, we have 
large leaking from transition aj ~ ag and small leaking from aJ -~ a i - l  and 
aj--> ai+ 1 . Therefore, unless p(ai l aj) is considerably smaller than p(aj [ a i_ l) 
and p(aj[a~+O, the modified probability p'(aj[ai) is substantially smaller 
than the original value. Since this argument is valid for any aj, the 
occurrence of state ai is suppressed by the noise. 

We claim that this suppression of the narrow states is the sole reason 
for the decrease of entropy in the presence of noise. Let us estimate this 
value by modifying a dynamics so that the narrow states are deleted. For 
calculational convenience, we take a Markov process as the original dy- 
namics. 

To delete a state from a Markov process with transition matrix p9 
(conditional probability of transition i ~ j )  we must delete the correspond- 
ing row and column. We can delete immediately the row. But because of 
the condition that summation of PO over a row is 1, there is an arbitrariness 
in deleting the column. When the noise is symmetric and the leaks from the 
wide states are small, it is reasonable to divide evenly the probability on a 
narrow state among the nearest neighboring wide states. To take an 
example, if a narrow state a~ is between wide states ai+ 1 and a~_l, the 
modified transition matrix Pji+_l is given by Pjg+_I + pjg/2. From this modi- 
fied matrix pb we calculate the modified stationary probability p; and its 
entropy. This modification generally results in the decrease of entropy. 

We apply these methods to the B - Z  map b = 0.012137285937 . . . .  
This is a Markov map. We can apply the above methods to any refinement 
of the Markov partition which has wide and narrow states. Of all these 
refinements, the largest change of entropy occurs for the smallest refine- 
ment. Therefore we consider the second refinement (Fig. 6). The narrow 
states are CAB, CAC, CAD, CAE. The appropriate noise is d = 0.001. We 
modified the matrix obtained by computer experiment without noise, and 
compare the modified entropy with simulation (Fig. 7). The entropy in the 
simulation is calculated based on the minimal partition, and a special 
"boundary condition." A word about  this condition Nay be in order. 

Noise in general has other effects than those discussed above. One of 
them is to kick the orbits out of the nonwandering set. This effect increases 
the entropy, and clearly it is not part  of the above consideration. In the 
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PARAMETER:@~ 
DEGREE:2~ 
5.01 

l 
F 

3,@ 

CAD 
j " ~ /C  A C 

- / C A B  

~ BRB 
BRD 
[}BA 
BRE 
BAC 

~ A [ 3 8  

Fig. 6. Second refinement of a Markov partition of B - Z  map with the same parameter as in 
Fig. 1. The vertical axis is the width of the states in log 10 scale. The symbol for each state is 
also indicated. 

simulation in Fig. 7 we avoid this effect by taking a mirror boundary 
condition. This means that if a point is out of the nonwandering set, we 
take a mirror image of this point about  the boundary and take this 
mirrored point as an orbital point. This amounts to modifying the distribu- 
tion of noise near the boundary. In that figure the result of a simulation 
without this condition is also depicted as the free boundary case. 

The agreement between the modified entropy and the simulation with 
the mirror boundary condition is good. The sudden decrease in entropy is 
indeed seen to occur at d = 0.001. The very good agreement in this case is 
due to the fact that the four narrow states we have deleted are isolated from 
the other states in Fig. 6. In such a situation our method of deleting the 
narrow states is expected to work very well in two points. First, we can 
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0,4 

<<<B-Z NODEL~• 

PARAHETER:8.01213727 

Z 
--H 

:20  
C ~  
- D  

0~ 

JHEORETICRL 

~ ~ - .  / VALUE 
/ 

i i i i i 

0o0001 0~ 
NOISE 

Fig. 7. Entropy of B - Z  map b = 0.0121372859...  (same as in Fig. 1) calculated based on 
the minimal partition. The symbolic dynamics is approximated by the Markov process of 
degree 12. See also Fig. 1. The noise is same as in Fig. 5a. The horizontal axis is the noise level 
in log 10 scale. Square, mirror boundary condition; triangle, free boundary condition. Theoret- 
ical value is also indicated. 

select the narrow states unambiguously, and second, the noisy dynamics of 
the appropriate noise level is indeed described by the modified matrix. But 
in general maps with nonuniform states, these things are not expected to be 
satisfied, so our simple method may not lead to a clear-cut answer. 

The difference of the entropy value between two boundary conditions 
is mainly due to the fact that, in the free boundary case, the sequence like 
L L L L L R  occurs frequently, while this sequence seldom occurs in the 
mirror boundary case. In the latter case, sequences of L of length more 
than 4 occur very rarely. But this effect increases the entropy in the free 
boundary case gradually as the noise level is increased, and does not 
necessarily hinder the entropy-reducing mechanism. Actually, the sudden 
decrease of entropy occurs in both cases in a similar way. The mechanism 
for decreasing entropy appears to work in both cases in the same way. 

Moreover, the modified value of entropy persists for a range of the 
noise level. Namely,  as the noise is further increased, other wider states 
begin to suffer from noise, (small variation in the entropy) but the four 
narrow states continue to be suppressed and this contributes large amount  
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to the decrease of the entropy. Therefore, in this case, the four narrow 
states play a very important role in decreasing entropy. 

Thus, the noisy dynamics is approximated by a dynamics which 
consists of the remaining states. The periodicity observed in the noisy B-Z  
model is attributed to periodicity in these remaining states. 

5. THE ISOMORPHISM CONSIDERATION 

The property of nonuniform convergence in Section 3 is not invariant 
under isomorphism transformations. A map with uniform states can be 
transformed to a map with nonuniform states by an isomorphism between 
unit intervals. In this section we show briefly an example of this transfor- 
mation. 

We start with the tent map f (Fig. 8a). Its minimal partition and 
refinements are all uniform. The isomorphism h is Fig. 8b and g 
= h o f o h-1 is shown in Fig. 8c. The minimal partition and its refine- 
ments of g are obtained by transforming that of f by h. The third 
refinements of the minimal partition of f and g are shown in Fig. 8b. From 
this, we can see that g has nonuniform states and the transition may occur 
near the noise level 0.001. 

D 

/ 
X ~  

c ~  

c ~  

c ~  ~ r 

O.O0 0,20 0.~0 

X (Ni 

\ 
\ 
\ 

_& 
I I I I 

O,BO 0.80 I.OG 

(a) 

Fig. 8. (a) Tent map. (b) Isomorphism and transformation of a partition. The figures in the 
right-hand side are the width of the elements of transformed partition. (c) Transformation of 
tent map. 
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0.20 0.~0 0,80 0.80 l.O0 

x 

(b) 

fi 1 f is83908 

23~0 

6718 

7031 
3281 

5~88 

359q 

7855 
7656 

359~ 

5~58 

3281 

7031 
67IB 

23~0 

3900 

/ 

o 

x o  

o 

g 
%.00 . . . . .  ~ ' ' 

0 .20  0 ,~0  O, 0 0 .80  1,OO 

X {N} 

(c) 

Fig. 8. Continued. 
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LO 

LO 
O-co 

CO~ 

!NVBR~ALv MEaSURZ NO]SE=8,OBOO] 

~ i  ~ 

o �9 , ' 

oIO0 ~120 OI~O 0"~0 0180 ]'00 

x 

(a) 

]NV~R]~qT ME~SURE NOZSE O~OOSOO 

r ~  

~g 

0.00 0.20 0.~0 8.80 0.80 1.00 

x 

(b) 

Fig. 9. Invariant measures of the map of Fig. 8c. Noise levels are (a) 0.00001 and (b) 0.005. 
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With g we calculate the invariant measures at the noise levels 0.00001 
and 0.005 (Fig. 9a 9b). In the larger noise case we observe an extra peak 
which indicates the expected transition. 

6. SUMMARY AND DISCUSSION 

The scenario for the noise-induced order in this paper is as follows. 
In certain maps, it is shown that the widths of the symbolic dynamical 

states are very nonuniform. In the presence of uniform noise on the map, 
the symbolic dynamics is suffered from very nonuniform noise because of 
the above nonuniformity. The major effect of this is to suppress the narrow 
states from the symbolic dynamics and this results in the sudden decrease 
in entropy at a critical noise level comparable to the width of the narrow 
states. We can calculate the entropy by approximating the noisy dynamics 
by a process lacking the narrow states. 

Above the critical noise level, the dynamics consists of a few surviving 
states. In some cases, it happens that these surviving states have a very 
simple feature. For example, in the B-Z  map a group of surviving states 
forms a nearly closed circle, i.e., transition probabilities between states are 
large for a sequence of transitions a l - - > a 2 ~ . . . - ~ a  1. Thus the noisy 
dynamics appears to be periodic. This is the cause of the peak in spectrum 
observed in Ref. 1. 

The map with nonuniform states is, therefore, considered to have a 
kind of "hidden dynamics" which consists only of the wide states. The 
noise-induced order is one instance of realization of this hidden dynamics. 
On the other hand, the hidden dynamics can be considered to be a 
description of the global features of the map. Therefore, it may reflect itself 
in other phenomena involving the map. For example, in the B-Z  map, the 
hidden dynamics is nearly periodic for any parameter value, while in the 
bifurcation sequence of B-Z  map simple stable periodic orbits share very 
large region in the parameter space. This may be considered as another 
instance of realization of the hidden dynamics. 

In experimental situations, we frequently have a sufficient amount of 
noise to realize "the hidden dynamics." To describe these phenomena, by 
using "the hidden dynamics" in place of the rigorous dynamics is very 
interesting. We indeed see the possibility in the B-Z  reaction. But these are 
left for a future study. 
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